
postgresql

How to Convert SQL Server to
PostgreSQL – Complete Migration Guide
A complete guide to migrating from Microsoft SQL Server to PostgreSQL — including

schema conversion, data transfer, stored procedure rewriting, validation, and

performance tuning. Includes tool comparison (pgloader, AWS SCT, DBConvert), ROI

breakdown, and hands-on SQL examples.

Dmitry Narizhnykh

Jul 17, 2025 • 11 min read

Assistance

https://dbconvert.com/blog/tag/postgresql/
https://dbconvert.com/blog/author/dmitry/
https://dbconvert.com/blog/author/dmitry/
https://dbconvert.com/blog

convert sql server to postgres

Introduction

Migrating from Microsoft SQL Server to PostgreSQL requires careful
planning due to differences in data types, T-SQL vs PL/pgSQL, and
architectural approaches. These two database systems have distinct
characteristics that impact migration strategies. PostgreSQL, as a
leading open-source database, offers significant advantages
including cost savings, advanced features, extensibility, and

freedom from vendor lock-in. PostgreSQL is free and permits
modification and distribution.

The fundamental difference: SQL Server, a Microsoft product,
requires expensive commercial licensing (typically $3,500-$28,000+
per core annually), while PostgreSQL is completely free with no
licensing fees or user limits. This often drives the decision to migrate,
with organizations saving 60-90% on database costs immediately.
PostgreSQL is highly scalable and supports parallel query execution,
suitable for large-scale workloads.

Whether you're reducing licensing costs, embracing open-source
flexibility, or leveraging PostgreSQL's advanced capabilities like
JSONB and extensibility, this guide will walk you through each phase
— from schema conversion and data transfer to validation and
performance optimization.

Migration Method Decision Tree

What's your primary migration driver?
├── Budget & Technical Expertise
│ ├── Free + Command Line Experience → pgloader
│ └── GUI + Professional Tools → DBConvert/DBConvert Studio
├── Sync & Testing Requirements
│ ├── One-time Migration → pgloader or DBConvert
│ └── Bidirectional Sync Needed → DBSync/DBConvert Studio
└── Enterprise & Cloud
 └── Large Scale → AWS SCT + DMS (for AWS targets)

mssql to postgresql decision

Comparing SQL Server and PostgreSQL – Key
Differences

Enhanced Data Type Mapping

SQL SERVER POSTGRESQL MIGRATION NOTES

INT IDENTITY SERIAL/BIGSERIAL Auto-increment behavior preserved

SQL SERVER POSTGRESQL MIGRATION NOTES

BIT BOOLEAN 1/0 → TRUE/FALSE

NVARCHAR(MAX) TEXT Unicode handling simplified; note differ

NVARCHAR(n) VARCHAR(n) UTF-8 native in PostgreSQL; be aware o

INT INTEGER Direct mapping

BIGINT BIGINT Direct mapping

DECIMAL NUMERIC Precision maintained

DATETIME2 TIMESTAMP PostgreSQL has better timezone suppo

VARBINARY(MAX) BYTEA Binary storage

NVARCHAR(MAX) + JSON JSONB PostgreSQL's JSONB offers superior pe

No native equivalent ARRAY PostgreSQL supports native arrays

UNIQUEIDENTIFIER UUID PostgreSQL has native UUID support

No native equivalent INTERVAL PostgreSQL supports time intervals

CHECK constraints ENUM PostgreSQL has native enum types

User-defined types Custom types PostgreSQL offers more flexible typing

Advanced PostgreSQL Features Not in SQL Server

Native Arrays: PostgreSQL supports multi-dimensional arrays with
indexing and operators.

-- PostgreSQL array example
CREATE TABLE products (
 id SERIAL,
 tags TEXT[],
 ratings INTEGER[]
);

JSONB Advantages: Binary JSON storage with advanced indexing
and operators.

-- PostgreSQL JSONB with GIN indexing
CREATE INDEX idx_product_data ON products USING GIN (data);
SELECT * FROM products WHERE data @> '{"category": "electronics"}';

Extensibility: Custom data types, operators, and functions.
Advanced Indexing: GIN, GiST, SP-GiST, BRIN indexes for specialized
use cases.

T-SQL to PL/pgSQL Migration Complexity

SQL Server's T-SQL differs significantly from PostgreSQL's PL/pgSQL:

Variable Declaration: DECLARE @var INT → DECLARE var
INTEGER;

Error Handling: TRY/CATCH → EXCEPTION WHEN

Cursor Syntax: Different loop structures and cursor
handling

Functions: SQL Server scalar/table functions → PostgreSQL
functions with different syntax

Pre-Migration Planning and Assessment Checklist

[] Audit SQL Server licensing costs and identify savings
opportunities

[] Review SQL Server version and feature usage

[] Inventory schema objects (tables, views, procedures,
functions, triggers)

[] Identify T-SQL specific features and dependencies

[] Map data types to PostgreSQL equivalents

[] Analyze stored procedure complexity for conversion effort

[] Backup SQL Server database

[] Set up target PostgreSQL instance (version 12+
recommended)

[] Create and configure a database user with appropriate
privileges in the target database

[] Plan application connection string and driver updates

[] Choose migration strategy based on downtime tolerance

[] Understand data size and complexity to plan the migration
strategy effectively

mssql to postgres checklist

Migration Cost Planning

Comprehensive Cost Analysis by Database Size:

SIZE MANUAL LABOR AWS SCT+DMS DBCONVERT PGLOADER LICENSE SAVING

<10GB 2–3 days $100–300* $179 + 4hrs 4–8 hrs $3,000–$10,0

10–100GB 1–2 weeks $300–800* $179 + 8hrs 8–16 hrs $15,000–$50

SIZE MANUAL LABOR AWS SCT+DMS DBCONVERT PGLOADER LICENSE SAVING

100GB–1TB 2–4 weeks $800–3000* $179 + 16hrs 1–2 days $75,000–$25

>1TB 4–8 weeks $3000+* $179 + 24hrs 2–5 days $250,000+

*AWS SCT is free; DMS pricing estimates shown above. Confirm
current AWS DMS pricing via official AWS documentation as rates
vary by region and usage patterns.

ROI Calculation: Most organizations see full migration cost recovery
within 3–12 months through eliminated SQL Server licensing fees.

Migration Success Example (Illustrative)

E-commerce Platform Migration Example

Size: 750GB, 300 tables, extensive JSON usage

Method: AWS SCT + DMS with DBConvert for final sync

Timeline: 3 weeks prep, 6-hour cutover

Key Benefits: 70% licensing cost reduction, improved JSON
performance

Result: 99.5% uptime, 40% faster JSON queries post-migration

Note1: DBConvert tools include DBConvert ($179), DBSync ($179 for
ongoing sync), and DBConvert Studio ($599 for universal database
support).

Note2: Azure Database Migration Service is not included as it does not
support SQL Server to PostgreSQL migrations.

Note: This is an illustrative example representing typical migration
outcomes. Actual results may vary based on specific requirements and
implementation.

Migration Tools and Strategies

AWS Schema Conversion Tool (SCT) + DMS

AWS provides enterprise-grade tools for large-scale migrations to
AWS targets.

✅ Enterprise-grade schema conversion with automation

✅ Handles complex T-SQL to PL/pgSQL conversion

✅ Integrated with DMS for seamless data transfer

✅ Minimal downtime with change data capture

✅ Adds linked servers to the object tree when Amazon RDS
is the target

✅ Converts user-defined table types into temporary table
structures

❌ AWS-specific - requires AWS cloud infrastructure and
targets

❌ Limited to AWS ecosystem migrations

Best for: Large enterprise migrations to AWS RDS PostgreSQL or
Aurora PostgreSQL.

Note: Azure Database Migration Service does NOT support SQL
Server to PostgreSQL migrations. Azure DMS supports PostgreSQL-to-
PostgreSQL migrations and SQL Server to Azure SQL targets, but not
cross-platform scenarios like SQL Server to PostgreSQL.

pgloader

Open-source command-line tool for SQL Server to PostgreSQL data
migration.

✅ Fast, reliable, and completely free

✅ Handles basic schema creation and data transfer

✅ Automatic data type conversion

✅ Supports importing data from flat file formats such as
CSV files

✅ Good for straightforward migrations

❌ Command-line only - requires technical expertise

❌ No GUI interface for visual mapping

❌ No bidirectional sync - one-direction only

❌ Limited customization compared to commercial tools

Best for: Budget-conscious migrations where you have command-
line expertise and don't need ongoing sync.

DBConvert

Commercial tool specifically designed for SQL Server ↔ PostgreSQL
migrations.

✅ Visual mapping interface with customizable type
mapping

✅ Automatic schema conversion - handles complex
schemas intelligently

✅ Bidirectional sync for testing and validation phases

https://dbconvert.com/mssql/postgresql/?ref=dbconvert.com
https://dbconvert.com/mssql/postgresql/?ref=dbconvert.com

✅ GUI-based - no command-line expertise required

✅ Professional support and documentation

❌ Commercial license required ($179)

Best for: Professional migrations requiring visual control,
bidirectional sync, or GUI interface.

DBSync

Specialized synchronization tool designed specifically for ongoing
database replication.

✅ Dedicated synchronization - purpose-built for keeping
databases in sync

✅ Bidirectional replication - changes sync in both
directions automatically

✅ Continuous operation - runs as ongoing service, not one-
time migration

✅ Real-time sync - minimal latency between database
changes

✅ Professional monitoring and error handling

❌ Commercial license required ($179)

Best for: Post-migration scenarios where you need to keep SQL
Server and PostgreSQL synchronized long-term, testing phases, or
hybrid deployments.

DBConvert Studio

Universal migration and synchronization tool supporting 40+
database types.

https://dbconvert.com/mssql/postgresql/?ref=dbconvert.com
https://dbconvert.com/blog/bidirectional-database-synchronization/
https://dbconvert.com/dbconvert-studio/?ref=dbconvert.com

✅ Everything DBConvert offers plus universal database
support

✅ Future-proof - supports migrations between any database
types

✅ Same bidirectional sync and visual mapping capabilities

✅ Enterprise features and scalability

❌ Higher cost ($599) but covers all database migration needs

Consolidated Data Transfer Methods

Method 1: pgloader

pgloader is an open-source tool specifically designed for SQL Server
to PostgreSQL data migration:

Install pgloader
apt-get install pgloader # Ubuntu/Debian
brew install pgloader # macOS

Basic migration command
pgloader mssql://user:pass@sqlserver/database postgresql://user:pass@pgserver

Advanced configuration file
load database
 from mssql://user:pass@sqlserver/database
 into postgresql://user:pass@pgserver/database

WITH include drop, create tables, create indexes, reset sequences

SET work_mem to '256MB',
 maintenance_work_mem to '512MB';

pgloader usage

Method 2: Native Export/Import

SQL Server Export:

-- Export using BCP
bcp "SELECT * FROM tablename" queryout "data.csv" -c -t"," -r"\n" -S server -

-- Or use SQLCMD with formatted output
SQLCMD -S server -d database -Q "SELECT * FROM tablename" -o "data.csv" -s","

-- Generate scripts for schema migration via SQL Server Management Studio

Use bcp or sqlcmd for mssql export

PostgreSQL Import:

-- Import using COPY
COPY tablename FROM '/path/to/data.csv' WITH CSV HEADER DELIMITER ',';

-- Or use \copy in psql or pgAdmin for client-side files
\copy tablename FROM 'data.csv' WITH CSV HEADER DELIMITER ','

import data to postgres db

Method 3: AWS DMS with Change Data Capture

For minimal downtime migrations using AWS Database Migration
Service:

1. Initial Load: Migrate existing data

2. CDC (Change Data Capture): Capture ongoing changes

3. Cutover: Switch applications to PostgreSQL

Step-by-Step Migration Execution

Phase 1: Schema Conversion

https://streams.dbconvert.com/blog/understanding-change-data-capture/?ref=dbconvert.com

Export table and schema definitions from SQL Server, then convert
to PostgreSQL-compatible syntax.

Convert SQL Server DDL to PostgreSQL:

-- SQL Server
CREATE TABLE Products (
 ProductID INT IDENTITY(1,1) PRIMARY KEY,
 ProductName NVARCHAR(100) NOT NULL,
 Price DECIMAL(10,2),
 IsActive BIT DEFAULT 1,
 CreatedDate DATETIME2 DEFAULT GETDATE()
);

-- PostgreSQL equivalent
CREATE TABLE products (
 product_id SERIAL PRIMARY KEY,
 product_name VARCHAR(100) NOT NULL,
 price NUMERIC(10,2),
 is_active BOOLEAN DEFAULT TRUE,
 created_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

Phase 2: Data Transfer

Export data from SQL Server using appropriate methods
(manual export, SSIS, SQLCMD, bcp)

Import into PostgreSQL with proper encoding (UTF-8)

Validate row counts and data integrity

Update sequence values for SERIAL columns

Phase 3: Stored Procedure Conversion

Convert T-SQL stored procedures to PL/pgSQL functions, adjusting
parameter handling and result sets.

T-SQL to PL/pgSQL Example:

-- SQL Server T-SQL
CREATE PROCEDURE GetProductsByCategory
 @CategoryID INT
AS
BEGIN
 SELECT * FROM Products
 WHERE CategoryID = @CategoryID
 ORDER BY ProductName;
END

-- PostgreSQL PL/pgSQL
CREATE OR REPLACE FUNCTION get_products_by_category(category_id INTEGER)
RETURNS TABLE (
 product_id INTEGER,
 product_name VARCHAR,
 price NUMERIC
) AS $$
BEGIN
 RETURN QUERY
 SELECT p.product_id, p.product_name, p.price
 FROM products p
 WHERE p.category_id = category_id
 ORDER BY p.product_name;
END;
$$ LANGUAGE plpgsql;

Phase 4: Application Updates

Update connection strings to PostgreSQL

Replace SQL Server database drivers with PostgreSQL drivers
for your programming language

Modify queries for PostgreSQL syntax differences

Update any SQL Server-specific function calls

Performance Considerations

Indexing Strategy Migration

SQL SERVER INDEX POSTGRESQL EQUIVALENT MIGRATION NOTES

Clustered Index ❌ No direct equivalent Use PRIMARY KEY with CLUSTER comm

Non-clustered Index ✅ B-tree Index Standard PostgreSQL indexes (default)

Filtered Index ✅ Partial Index WHERE clause conditions supported

Full-text Index ✅ GIN Index + tsvector More powerful text search capabilities

Spatial Index ✅ GiST Index + PostGIS Enhanced spatial features via extension

Columnstore Index ✅ BRIN Index For large tables with natural ordering

XML Index ❌ Limited equivalent Use GIN indexes on extracted data

PostgreSQL Performance Advantages

Better JSONB Performance:

-- PostgreSQL JSONB with native operators
SELECT * FROM products
WHERE data @> '{"category": "electronics"}'
AND data ? 'discount';

-- Create GIN index for fast JSON queries
CREATE INDEX idx_products_data ON products USING GIN (data);

Advanced Query Planning:

PostgreSQL's query planner often outperforms SQL Server on
complex queries

Better handling of large result sets

More sophisticated join algorithms

Enhanced Validation and Testing

Data Integrity Verification

Row Count Comparison:

-- SQL Server
SELECT COUNT(*) FROM tablename;

-- PostgreSQL
SELECT COUNT(*) FROM tablename;

Checksum Verification:

-- PostgreSQL data validation
SELECT
 schemaname,
 tablename,
 n_tup_ins - n_tup_del as row_count
FROM pg_stat_user_tables
ORDER BY schemaname, tablename;

Performance Testing

Query Performance Comparison:

Migrate top 20 most critical queries

Compare execution plans using EXPLAIN ANALYZE

Test with production-like data volumes

Validate that PostgreSQL performance meets or exceeds SQL
Server

Common Migration Pitfalls and Solutions

Character Encoding Differences

SQL Server: Uses UTF-16 encoding by default
PostgreSQL: Uses UTF-8 encoding natively

Migration considerations:

-- Ensure UTF-8 encoding during database creation
CREATE DATABASE mydb
 WITH ENCODING = 'UTF8'
 LC_COLLATE = 'en_US.UTF-8'
 LC_CTYPE = 'en_US.UTF-8';

Identity Column Migration

Problem: SQL Server IDENTITY doesn't transfer sequence values
Solution:

-- After data import, reset sequences
SELECT setval('tablename_id_seq', (SELECT MAX(id) FROM tablename));

Case Sensitivity Differences

Problem: PostgreSQL is case-sensitive by default
Solution: Use consistent naming conventions or quoted identifiers

NULL Handling in Unique Constraints

SQL Server: Multiple NULLs allowed in unique indexes
PostgreSQL: Also allows multiple NULLs (similar behavior)

JSON Migration Advantages

SQL Server JSON → PostgreSQL JSONB provides significant
benefits:

Better performance with binary storage

Native operators (, ->>, #>, @>, ?)

Advanced indexing with GIN

JSONPath support in newer versions

Post-Migration Optimization

PostgreSQL-Specific Optimizations

1. Vacuum and Analyze:

-- Set up automatic vacuum and analyze
ALTER SYSTEM SET autovacuum = on;
SELECT pg_reload_conf();

-- Manual vacuum for immediate optimization
VACUUM ANALYZE;

2. Connection Pooling:

-- Configure connection pooling (pgbouncer recommended)
-- PostgreSQL handles connections differently than SQL Server

3. Memory Configuration:

-- Optimize PostgreSQL memory settings
ALTER SYSTEM SET shared_buffers = '25% of RAM';
ALTER SYSTEM SET effective_cache_size = '75% of RAM';
ALTER SYSTEM SET work_mem = '256MB';
SELECT pg_reload_conf();

Walkthrough: Migrating SQL Server to PostgreSQL
Using DBConvert Studio

DBConvert Studio provides a comprehensive solution for SQL Server
to PostgreSQL migration with universal database support.

Step 1 – Connect Databases

Launch DBConvert Studio

Configure SQL Server source connection (Windows or SQL
Authentication)

new SQL Server connection

Set up PostgreSQL target connection

Test both connections.

Step 2 – Customize options for conversion/ sync.

Configure database objects.

Step 3 – Data Type Mapping Customization

Customize NVARCHAR → VARCHAR mappings

Configure IDENTITY → SERIAL conversions

Set up JSON → JSONB transformations

Preview conversion results

Step 4 – Configure Data Filters (optional)

Step 5 – Execute Migration

Choose full migration or sync mode

Monitor real-time progress and logs

Handle any conversion errors or warnings

Verify data integrity during transfer

Frequently Asked Questions (FAQ)

Q: Can I migrate T-SQL stored procedures automatically?
A: Tools like AWS SCT can convert many procedures, but complex T-
SQL often requires manual rewriting. PostgreSQL's PL/pgSQL is
powerful but syntactically different.

Q: How does PostgreSQL licensing compare to SQL Server?
A: PostgreSQL is completely free and open-source with no licensing
fees, no core limits, or CAL requirements. When factoring in total
database operational costs (including optional support, training, and
migration), most organizations still save 60-90% overall.

Q: Will my applications need major changes?
A: It depends on your application architecture. Simple applications
using basic SQL may need only minor changes (connection strings,
drivers). However, applications heavily relying on T-SQL stored
procedures, SQL Server-specific functions, or proprietary features
may require significant modifications.

Q: How does PostgreSQL JSON compare to SQL Server JSON?
A: PostgreSQL JSONB significantly outperforms SQL Server JSON with
binary storage, native operators, and advanced indexing capabilities.

Q: Can I maintain both systems during migration?
A: Yes. Tools like DBSync support bidirectional sync, allowing parallel
operation during testing and gradual transition.

Q: What about performance compared to SQL Server?
A: PostgreSQL often performs better, especially for complex queries,
JSON operations, and analytical workloads. Proper tuning is essential
for both systems.

Q: Is PostgreSQL enterprise-ready?
A: Absolutely. PostgreSQL powers major enterprises worldwide
including Apple, Instagram, Netflix, and many Fortune 500
companies.

Q: How do I handle SQL Server-specific features?
A: Most SQL Server features have PostgreSQL equivalents or better

alternatives. Some proprietary features may require application logic
changes.

Ready to Migrate from SQL Server to PostgreSQL?

Breaking free from SQL Server licensing costs while gaining
PostgreSQL's advanced features and flexibility is a strategic decision
that pays dividends immediately. Whether you're driven by cost
savings, feature requirements, or open-source principles, the
migration path is well-established and supported by excellent
tooling.

For SQL Server to PostgreSQL migrations with visual mapping
and professional features, try DBConvert for MSSQL &
PostgreSQL starting at $179 — providing cost-effective migration
with trusted technology used by thousands of organizations
worldwide.

For ongoing synchronization after migration, DBSync at $179
specializes in bidirectional real-time replication between SQL
Server and PostgreSQL, perfect for:

Maintaining hybrid environments during extended transition
periods

Real-time data synchronization for testing and validation

Long-term dual-database deployments

Disaster recovery and backup strategies

For universal database migrations supporting 40+ database types
beyond just SQL Server and PostgreSQL, explore DBConvert Studio
— the comprehensive platform for enterprise migrations. Studio

https://dbconvert.com/mssql/postgresql/?ref=dbconvert.com
https://dbconvert.com/mssql/postgresql/?ref=dbconvert.com
https://dbconvert.com/mssql/postgresql/?ref=dbconvert.com
https://dbconvert.com/dbconvert-studio/?ref=dbconvert.com

provides the same intuitive interface and sync capabilities across the
entire database ecosystem.

Start your journey to database freedom and immediate cost savings
today.

Sign up for more like this.

Enter your email Subscribe

Jul 15, 2025 9 min read

How to Convert
PostgreSQL to SQL Server
– Complete Migration
Guide

Learn how to convert PostgreSQL to SQL

Server with minimal downtime. Covers… Jul 5, 2025 11 min read

Best Ways to Convert
MSSQL to MySQL: A Step-
by-Step Guide

Learn how to convert Microsoft SQL Server

(MSSQL) to MySQL efficiently with this…

DBConvert blog © 2025

https://dbconvert.com/blog/how-to-convert-postgresql-to-sql-server-guide/
https://dbconvert.com/blog/how-to-convert-postgresql-to-sql-server-guide/
https://dbconvert.com/blog/convert-mssql-to-mysql/
https://dbconvert.com/blog/convert-mssql-to-mysql/
https://dbconvert.com/blog

Powered by Ghost

https://ghost.org/

